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ON OBLIQUE QUASI-PROCRUSTEAN
FACTOR TRANSFORMATION

A. RALPH HAKSTIAN*

UNIVERSITY OF ALBERTA

The purpose of this paper is twofold. First, a new--but hardly revolution-

ary--general approach to the problem of oblique factor transformation is

identified and presented as an alternative to the common "blind" transformation

techniques currently available. Secondly, techniques for implementing such an

approach are developed. The first section of the paper contains a brief review

of the procrustes problem. The next section contains the rationale for a some-

what related--"quasi-procrustean"--approach to oblique factor transformation. The

third section contains the development of new techniques for implementing this

approach. Following this derivation, solutions for three well-known sets of data

are presented. Finally, some aspects of such an approach in need of further

research are discussed.

1. The Procrustes Problem

The objective in general procrustean transformation is to find that trans-

formation which, when applied to some preliminary matrix--for example, of un-

rotated components, image factors, or common fantors--yields a solution matrix

* The author is pleased to acknowledge the helpful suggestions given him
by the following persons who read the paper: Drs. Gene V Glass, University
of Colorado, Ronald K. Hambleton, University of Massachusetts, and Roderick
P. McDonald, the Ontario Institute for Studies in Education.
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that is, according to some criterion (traditionally that of least-squares,

although it need not be), the closest possible fit to a "target" matrix. The

target matrix in such an application is usually generated by a prior hypothesis

or factor study, and the procedure can be characterized as hypothesis confirmation,

as opposed to the more prevalent factor analytic objective of hypothesis generation

(see Cattell, 1966). If the obtained solution matrix is "close" to the target

matrix, one concludes that the hypothesis manifested in the target matrix has

been confirmed. "Closeness" appears, at present, not to have been operationalized.

Several methods of obtaining an oblique procrustean solution have been pro-

posed. The best known [Hurley & Cattell, 1962; Mosier, 1939], yields a least-

squares transformation to a reference-vector structure solution only prior to

column-normalization. Browne [1967] presented an exact unit-length least-squares

transformation to a reference structure matrix, and Mulaik [1969] extended this

work to a least-squares fit to a primary-factor pattern matrix. It: is noted in

passing that least-squares solutions to the orthogonal procrustes problem have

been proposed for various specialized cases by Gibson [1960, 1962], Green [1952],

and Johnson [1964], and for the most general case by Schonemann [1966]. It

appears that the problem of obtaining procrustean solutions- -both orthogonal and

oblique--satisfying the least-squares criterion has, for all purposes, been

solved. Alternative criteria remain a possibility for further research on the

procrustes problem.

2. Rationale for a Quasi-Procrustean Approach

The usual objective in factor analytic studies is to discover, rather than

confirm the existence of, factors, and it is the former application that is the

major concern of the rest of this paper. The proposal developed in this section,
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then, differs in aim from the techniques noted in the preceding section, in that

no prior expectations determine the shape of the final solution.

An oblique quasi-procrustean procedure will be defined as one in which

a final oblicc,e solution is the result of first obtaining, from the data at

hand, rather than from prior hypothesis or experiment, a preliminary estimate

of how the final structure should appear, and then obtaining the "cleanest"

(in some sense) manifestation of that structure, or, alternatively, the most

compelling simple structure. Two procedures, which are free to vary, are implied

by such an approach. The first is the method in which the preliminary estimate is

generated. The second is the method of obtaining the optimal manifestation of

this preliminary estimate for the data. Probably the best known quasi-procrustean

technique is promax [Hendrickson & White, 1964], in which the preliminary estimate

is a "blind" orthogonal solution--typically varimax--and the cleanest manifestation

of this structure is obtained by raising each element of the orthogonal solution

matrix to a power--typically the second or fourth--retaining the signs, and

obtaining the least-squares transformation to this target using the fitting

technique of Mosier [1939] and Hurley and Cattell [1962]. A quasi-procrustean

solution may involve obtaining some "ideal" target matrix (perhaps a matrix of 0's

and l's) from the preliminary estimate of structure and using one of the pre-

viously noted matrix fitting procedures to simulate, as closely as possible, that

target. An alternative to this procedure is presented in the following section.

The most compelling rationale for a quasi-procrustean approach seems, to the

author, to rest in the fact that, among the current "blind" automatic techniques,

(1) none appears capable of consistently yielding cleanest or most interpretable

solutions for all kinds of data (see Hakstian, in press), and (2) not only may the

clarity of resolution between salient and hyperplane elements differ between two
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analytic solutions for the same data, but the actual factors themselves may be

somewhat different, a factor being marked by a certain subset of variables in

the one solution and the corresponding factor (as closely as can be determined)

being marked by only some of these variables in the other. The final inter-

pretation of the factors obtained may well be a function of the particular

transformation procedure employed. Such "blind" procedures are used, then, to

obtain simultaneously, the underlying structure of the data--that is, the variables

marking each factor--and the most clear-cut and interpretable manifestation of

this structure. What appears needed is a final solution whose structure is

somewhat generalizable over several transformation techniques--a viewpoint that

appears in line with Harris [1967), whose concern was generalizability over factor

models and extraction procedures--and which represents the most clearly resolved

representation of that structure.

It is proposed that the quasi-procrustean approach in general, then, should

ideally involve first, identifying for each factor the variables that appear to

define the factor with some constancy over several transformations of the unrotated

matrix, and second, obtaining that solution most clearly displaying this structure.

3. Development of a Quasi-Procrustean Comp.iting Procedure

The overall strategy dealt with in this paper requires that for each factor,

a decision be made as to which variables are likely to be consistently (over

transformations) "salient," or, alternatively, to have large (in absolute value)

projections on the factor axis. Although such a procedure appears subjective,

attempts to put this phase on an operational footing are discussed later in this

section.

A Technique for Clear Resolution of the Structure

Once the salient variables for each factor have been determined, one simple

structure representation of it may be obtained by constructing a target vector--

6
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perhaps containing only 0's, l's and -1's--ane obtaining the least-squares fit,

using the techniques of Section 1. An alternative resolution of salient and

hyperplane elements, however, may be obtained by maximizing their separation. It

is this approach that will be developed in this section. Still a third hyper-

plane-fitting procedure--but using only the non-salient variables--was noted by

Harris and Kaiser [1964, p. 360].

The technique to be considered may be seen. as a "maximal mean difference"

criterion. Let A, of order n x m, be a given matrix of unrotated factor

coefficients, where n is the number of variables, and m, of factors. We wish to

find a transformation matrix B, of order m x m, yielding a matrix V, of order

n x 2, of transformed reference structure coefficients

(1) V = AB

that has a set of m extremum properties as follows: Let V = ,ym].

In the ith column of V, v., label some p. elements as salient, and the q.

remaining elements ds non-salient (so that, of course, + g = n). Then

choose the ith column of B, b., subject to the constraint
-1

(2) = 1, j = 1, ,. 115
-1-1

so that the difference between the mean square (thus treating positive and

negative salients as equivalently marking the factor) of the salient elements, and

the mean square of the non-salient elements, of v., is an absolute maximum,

i.e., such that

(3) . =1 1Z.
1 2

3 kj (s)I3 (ns)-13.

attains its supremum value, where the first sum on the right is over the p.
-1

salientelements,andthesecondisoverthea.=-salient elements.

7



Now let

(4)

6

v. = v. , + v.
-g -3(s) -g(ns)'

where v.3 is obtained from v. by replacing all non-salient elements by- --j

zeros, and v.
g(ns)

is obtained from v. by replacing all salient elements by
- -3

zeros, j = 1, ... , m. Correspondingly, let

( 5 ) A =
(s)

A.
3

+
j(ns)'

where A.(s) is obtained from A by replacing each row whose row-index is the

same as that of a non-salient element of v., by a null row, and conversely

for A.
3(ns)'

j = 1, ..., 121 We may then rewrite (3) in the form

(6) = v. v v. v.
-3 P. -0(s) -j(s) q . -j (ns) (ns) '

and clearly we also have

(7)

v.
-j(s)

=
-3
A. (0-0-

2j (ns) .4-j(ns)1,

so that (6) becomes

1
= b'A A. b - -WA! A b

(8) 3
q3 3 (s) j (s) ] (ns)j (ns)-
-3

= b'W.3b,

where

(9) W. = A! A. - A! A.
-3 (s )-] (s ) q .-j (ns)-] (ns) '

j_ = 1, , m.

From well-known theory, the absolute maximum of (1). in (8), subject to the

constraint (2), is given by the largest latent root of W., at the point b = b.

where b. is the corresponding (normalized) latent vector, j = 1, , m.
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To form the entire transformation matrix B, then, we form successively the m

matrices W1, , w , correspondingly obtain the latent vectors , b ,v

that yield the largest latent root of each matrix so formed, and set B =

[b b ] .

It was found in practice that the mean difference criterion as developed

above was generally maximized by transforming to very latge values for the

salient variables and values only moderately close to zero for the potential

hyperplane variables. Consequently, a weighting factor was sought to apply to

the squared non-salient entries in order to increase thkr importance in the

maximization procedure, under the assumption that a solution with salient

values dispersed about .50 and hyperplane values, about. .05 is greatly preferable

to one with the salients dispersed about .60 and the npn-salients, about .15.

Thus, analogously to (3), we seek the absolute maximum of

1 2(10) = v.E. .sj
j ys)

k1 I 2v..,

(ns)--1°

where k is the weighting factor. Equation (9) is replaced by
.....

(11) Wt =
1

A! A. -
k

A! A. .

--J E.-j(s)-j(s) q.-0 (ns)-j(n0'
1

.1 = 1, , m.

The absolute maximum of 4)* in (10), subject to the constraint (2), then, is

obtained by choosing for b., the latent vector corresponding to the largest

it.

latent root of Wt. Several values of k have been tested: 3, 10, 20, 50, 100,

and 500; the optimal value appears to be around 50. It is interesting to note
ii

that a value of 50 for k will generally make the two terms on the right side

of (10) approximately equal, thus assigning roughly INual importance to increving

the salient coefficients in absolute value and lowering the non-salient.

9
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Although the preceding technique was developed in the context of oblique

quasi-procrustean transformed factor solutions, other applications may be seen

for it. The criterion is, first of all, somewhat akin to the discriminant

function, which maximizes a different index cf division between groups, namely

MS,/MM, and it should be clear that if the variables in a factor solution were

replaced with persons, and the factors with variables, the maximal mean difference

criterion could be used analogously to a discriminant function in categorizing

persons. Further, this technique may be used in the "pure" procrustean application,

as an alternative to the matrix fitting procedures mentioned in Section 1, merely

by identifying the salient variables--both positive and negative--for a factor

from prior hypothesis or experiment. In the following development, however,

the procedure is developed in the quasi-procrustean context.

The preceding technique has the advantage over matrix fitting to a target

vector of 0's, l's, and -1's of restricting neither the salient nor non-salient

variables to as close an approximation as possible to equality among themselves

(which happens, for example, by fitting all salient entries to the same value, 1).

Justification for this rather severe restriction will seldom, if ever, exist,

nor will reliable evidence exist for establishing specific different target values

within each group.

Determination of Salient and Non-Salient Variables for Each Factor

Two approaches to this phase of the overall procedure follow.

(a) Defining salient as consistently moderate or large over several

different orthogonal rotations

Sine orthogonal factor solutions generally permit a more tentative

interpretation of the factors than do oblique solutions, obtaining several different

orthogonally transformed representations of the data and identifying a common

:10
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structure over solutions is one possible approach at this stage. A fairly wide

range of solutions can be obtained by varying the w parameter in the general

"orthomax" criterion [Harman, 1960; Harris & Kaiser, 1964]:

n m
4

m n 2

n 13. w ( b;" ) = maximum,
j=1 p=1 113 p=1 j=1 11)

where b. is the orthogonal factor loading of variable j on factor p, n is the

number of variables, and m, of factors. A value for w of 0 gives the quartimax

criterion, 1 gives varimax, and m/2, equamax.

Orthogonal solutions obtained using the orthomax criterion with w set to,

say, 0, 1, m/2, and m, can be expected to differ somewhat and, in general, the

variance among the factors will be increasingly more evenly dispersed as w

increases. For each factor, the variables that consistently have large (in

absolute value) loadings over the several solutions obtained may be identified

as the salient variables for that factor, the remaining non-salient variables

being relegated to that factor's hyperplane. As yet, no thoroughly tested rule

as to what constitutes "consistently large loadings" has been developed, but one

decision rule has been used with fair success and is elaborated in connection with

some empirical solutions presented in a later section.

(b) Defining salient as consistently large over several maximal mean

difference solutions varying in the choice of other salient variables

Starting from any good orthogonal solution, e.g., a varimax solution,

this approach involves rank ordering the orthogonal loadings for a factor and

considering, in turn, the largest r as salient, the largest r -1, r -2, and so

on until only two or three salient variables remain. The value of r may be as

large as n/2. Those variables that consistently have large reference structure
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coefficients (in absolute value) after the application of the maximal mean

difference criterion, regardless of what and how many other variables are

considered salient in the application of the procedure, and even when they are

included among the non-salients in a particular application of the technique, may

be considered salient for that factor. Greater elaboration is provided in a later

section, where an empirical solution using this approach is presented.

Summary of the Procedure

The steps in the proposed quasi-procrustean procedure can be summarized

as follows:

(i) Determine the salient and non-salient variables for each factor by

one of the methods described earlier.

(ii) Using the results of (i), for each factor, .12 construct the matrix

" (1/12j)(04j(s) (ns)j(ns)' j 1, , m. The optimal

value of k is likely to be around 50.

(iii) For each factor, 1_, determine the vector of direction cosines, b., of

order m x 1, where b. is the normalized latent vector corresponding to

the largest latent rout of Wt, j_ = 1, , m.

Note that if method (b) of the immediately preceding section is used

to determine salient and non-salient variables for a factor, steps

(ii) and (iii) must be repeated several times for each factor,

with the variables considered salient varied each time.

(iv) Construct the transformation matrix, B, by B = [bl, , b
m
].

A reference structure solution, V, is then obtained by V = AB. A

primary pattern solution and the other matrices of interest are

subsequently obtained by well-known relationships.

12
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The quasi-procrusLean procedure developed in this section contains several

rather clear-cut steps and consequently may appear somewhat time consuming.

Actually, however, given an operationalized decision rule for the determination

of salient variables for each factor (possibly an input parameter), a complete

solution can be obtained in one computer run, with no need for intervention by

the user.

4. Empirical Examples

The procedures developed in Section 3 were programmed and applied to three

sets of data, each with a well-known structure ascertained from several analytic

solutions and a graphic oblique solution: (1) the (20 x 3) Thurstone Twenty-

Variable Box Problem, for which the centroid and graphic oblique solutions were

found in Thurstone [1947], (2) the (20 x 5) Sixteen P. F. variables, for which

centroid and graphic oblique solutions were obtained from Horn [1963], and (3)

the Holzinger-Harman (24 x 4) Twenty-Four Psychological Tests, with centroid

and graphic solutions in Harman [1960].

For data sets (1) and (2), procedure (a) of the preceding section was

employed to determine the salient variables for each factor. Three orthomax

solutions were obtained--with w set to 1 (varimax), m/2 (equamax), and m. For

each factor, a variable was considered salient if it loaded either .25 or larger

(in absolute value) in all three solutions or .30 or larger (in absolute value)

in at least one solution and .20 or larger in the others. For data set (3),

procedure (b) of the preceding section was employed. For all three data sets, k,

in the maximal mean difference criterion, was set to 50--other values for k were

not investigated with these data sets.
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For each of the three data sets, the obtained quasi-procrustean solution was

compared with a solution obtained using the Harris-Kaiser [1964] method--found

in an earlier study [Hakstian, in press] to be the best among several currently

available analytic oblique techniques which were compared. The obtained

solutions were compared and evaluated on three operational criteria of simple

structure: (1) hyperplane counts (number of coefficients on the hyperplanes--

0±.10), as rough indices of clarity of resolution between salient and non-salient

elements, (2) obliquity of the solution--measured in terms of within-method

primary factor intercorrelations and corresponding angular separations (0 =

arccos r
c1P),

using the graphic solution as the standard of correctness, and (3)

closeness of each analytic primary factor to the corresponding graphic primary- -

measured in terms of between-method correlations and corresponding angular

separations--and an overall measure of closeness of the obtained with the graphic

solution, the mean angular separation of primary axes. The rationale for procedure

(3) is given elsewhere [Hakstian, in press].

Thurstone Twenty-Variable Box Problem

In Table 1, the graphic, Harris-Kaiser (P'P proportional to cl) version with

varimax rotations), and quasi-procrustean primary-factor pattern solutions for

the Box Problem are presented, along with the within-method correlations and

angular separations, and the correlations and angular separations between the

factors of the graphic solution and those, in turn, of the Harris-Kaiser and

quasi-procrustean solutions. It can be seen from Table 1 that both the Harris-

Kaiser and quasi-procrustean solutions are extremely close to the graphic, the

quasi procrustean having values identical, to two decimal places, to the graphic

in 43 of the 60 primary pattern coefficients. Some discrimination is possible

in terms of within-method obliquity, with the quasi-procrustean solution closer

to the graphic than was the Harris-Kaiser. If we define, for a pair of factors

14
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TABLE 1

Primary Pattern Solutions, Hyperplane-Counts, and Within- and Between-Method
Correlations and Angular Separations for the Graphic, Harris-Kaiser*, and
Quasi-Procrustean Solutions of the Thurstone Twenty-Variable Box Problem

(Decimal Points Omitted)

Primary Pattern Solutions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Graphic Harris-Kaiser* Quasi-Procrustean

27

I

100
03
01
49

40
01
74

87

-01
63

69

-01
98

-03
03
29

66

97

07

00

II

00

99

02

76

01
41

54

02
80

66

01
64

04

97

-02

38
48

-03
95

03

III

00
01
99

00

87

82

-03

40

46

-01
66

65

-01
07

96

72

28

01

-04

98

I

100

01
-03

48
37

-03

74

87

-04
63

67

-04

99

-04

-01
26

65

98

06

-04

II

00
98

-01
76

-03
38

53
00

78

65

-02
62

03
96

-06
35

47

-04
95

00

III

-04

03

100

00

87

84

-04

37

48

-01

64

67

-05

09

98

73

27

-02

-02

99

I

99

02

01

49
40

01

74

87

-01
63

69

-01

98

-03
03

29

66

97

07

00

II

01
99

02

77

00

41

54
02

80

66

01

64

04

97

-02

38

49

-03

95

03

III

01
01

98

01

87

82

-01
41

46

00
67

65

00
07

96

73

29

02

-04
98

H -Count 9 9 9 27 9 9 9 27 9 9 9

Within-Method Primary Factor Correlations and Angular Separations

I

GiLaphic Harris-Kaiser* Quasi-Procrustean

100 100 100
II 23 100 26 100 23 100

III 11 22 100 19 25 100 09 22 100

I 0° 0° 0°

II 76°46' 0° 75°11' 0° 76°58' 0°

III 83°58' 77°3' 0° 79°19' 75°44' 0° 84°54' 77°6' 0°

Between-Method Correlations Between-Method Angular Separations

Graphic Primary Factor Graphic Primary Factor

Solution I II III I II III Mean

Harris-Kaiser* 9991 9987 9979 2°26' 2°55' 3°43' 3° 1'

Quasi-Procrustean 9995 9991 9996 1049' 2°26' 1'37' 1057'

*The Harris-Kaiser solution is the P'P proportional to 4) version with varimax rotations.
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p, q, the "departure from orthogonality" as

langular separation
Pq

- 90°1, we have a mean departure from orthogonality

(over the three factor pairs) of 10° 44' for the graphic solution, 13° 15' for

the Harris-Kaiser, and 10° 21' for the quasi-procrustean. The mean, over the

three factors pairs, on an analogous measure--departure from obliquity of the

graphic solution (langular separation
Pq

- graphic angular separation
Pq

1)--

was for the Harris-Kaiser solution, 2° 31', and for the quasi-procrustean, 0° 24'.

Clearly, the obliquity of the quasi-procrustean solution was closer to that of the

graphic than was that of the Harris-Kaiser solution. Finally, the Harris-Kaiser

factors were separated from the graphic, on the average, by 3° 1', whereas the

quasi-procrustean - graphic mean angular separation was 1° 57'.

Sixteen P. F. Data

In Table 2, the graphic, Harris-Kaiser (P'P proportional to (I) with equamax

rotations), and quasi-procrustean primary pattern solutions for the Sixteen P. F.

data, with hyperplane-counts, are presented. From this table, it can be seen that

on Factors I, II, V, and possibly IV, the quasi-procrustean coefficients are, in

general, closer than the Harris-Kaiser, to the graphic. On Factor III, the

first decision rule for identifying salient variables described in a preceding

section--using the three orthomax solutions--indicated that variables 2, 5, 7, 9,

and 20 should be considered salient for this factor, missing variables 12 and 19

that, had they been included, would have permitted a close approximation to the

graphic factor and a considerably closer overall solution. The decision rule used

worked effectively for the remaining four factors. The total solution hyperplane-

counts only slightly favored the quasi-procrustean solution (42) over the Harris-

Kaiser (41). Perhaps a more effective quick index of a solution's "cleanness"

16



T
A
B
L
E
 
2

P
r
i
m
a
r
y
 
P
a
t
t
e
r
n
 
S
o
l
u
t
i
o
n
s
 
a
n
d
 
H
y
p
e
r
p
l
a
n
e
-
C
o
u
n
t
s

f
o
r
 
t
h
e
 
G
r
a
p
h
i
c
,
 
H
a
r
r
i
s
-
K
a
i
s
e
r
*
,

a
n
d
 
Q
u
a
s
i
-
P
r
o
c
r
u
s
t
e
a
n
 
S
o
l
u
t
i
o
n
s
 
o
f
 
t
h
e
 
S
i
x
t
e
e
n
 
P
.
 
F
.
 
D
a
t
a

(
D
e
c
i
m
a
l
 
P
o
i
n
t
s
 
O
m
i
t
t
e
d
)

G
r
a
p
h
i
c

H
a
r
r
i
s
-
K
a
i
s
e
r
*

Q
u
a
s
i
-
P
r
o
c
r
u
s
t
e
a
n

I
I
I

I
I
I

I
V

V
I

I
I

I
I
I

I
V

V
I

I
I

I
I
I

I
V

V

1
-
2
6

3
9

-
0
6

3
1

-
1
1

-
2
1

3
6

-
1
2

3
3

-
1
1

-
2
2

3
9

-
1
3

3
1

-
1
5

2
-
0
5

6
7

5
1

0
8

-
1
3

2
2

6
6

4
1

0
7

-
0
3

0
4

6
8

3
7

1
3

-
0
4

3
0
9

3
5

2
1

-
2
0

1
3

2
5

3
7

1
3

-
2
1

1
8

1
2

3
6

0
7

-
1
7

1
7

4
-
3
6

5
0

0
3

0
2

0
3

-
2
3

5
1

-
0
8

0
3

0
6

-
3
3

5
1

-
1
5

0
2

0
0

5
0
6

-
5
4

3
5

0
7

-
1
1

-
0
1

-
5
3

4
5

0
2

-
0
8

0
5

-
5
6

5
4

0
6

-
0
2

6
-
1
0

-
1
0

0
3

-
2
6

0
3

-
0
8

-
0
6

0
1

-
2
6

0
5

-
1
2

-
1
0

-
0
2

-
2
8

0
3

7
-
0
7

0
3

5
6

1
1

-
0
6

0
4

0
4

5
5

0
7

0
2

-
0
3

0
3

5
9

1
5

0
5

8
0
9

0
7

1
0

7
0

1
0

0
0

-
0
3

1
3

6
6

0
3

1
3

0
2

2
3

7
5

1
0

9
3
3

-
0
9

2
9

3
4

0
6

3
0

-
1
5

3
4

2
8

0
4

3
6

-
1
2

4
2

3
8

1
3

1
0

5
6

0
9

0
8

-
0
9

-
0
3

5
8

0
6

1
2

-
1
0

-
0
6

5
5

0
9

1
2

-
0
7

-
0
1

1
1

7
0

0
5

0
4

0
9

-
0
5

7
1

-
0
1

1
0

-
1
2

-
1
1

6
9

0
4

1
0

-
0
9

-
0
5

1
2

7
5

-
0
8

-
3
2

1
0

0
6

6
1

-
1
9

-
2
3

0
9

-
0
7

7
2

-
1
2

-
1
9

0
9

0
0

1
3

-
3
6

-
0
4

2
1

-
2
3

2
4

-
2
8

0
5

1
2

-
2
5

3
1

-
3
6

-
0
2

0
9

-
2
2

2
9

1
4

-
5
7

-
0
1

1
0

-
0
3

1
0

-
5
3

0
7

0
3

-
0
3

1
7

-
5
7

0
1

0
1

-
0
3

1
3

1
5

-
0
9

0
1

-
0
7

0
9

5
5

-
1
4

0
3

-
1
5

0
6

5
2

-
1
0

0
1

-
1
3

1
3

5
4

1
6

-
5
9

-
0
8

0
2

-
1
1

0
4

-
5
6

0
0

-
0
3

-
1
0

1
0

-
5
9

-
0
6

-
0
6

-
1
3

0
5

1
7

0
0

-
0
1

0
3

-
1
0

5
9

-
0
2

0
3

-
0
6

-
1
4

5
6

-
0
2

-
0
1

-
0
7

-
0
6

5
9

1
8

0
9

-
0
3

0
8

-
5
1

0
5

1
7

0
5

0
5

-
5
0

0
9

0
6

0
0

-
0
1

-
5
2

0
7

1
9

-
5
2

0
3

3
5

-
0
1

2
4

-
4
3

1
1

2
6

-
0
4

3
3

-
4
9

0
4

2
6

0
2

3
1

2
0

-
2
8

-
0
9

4
7

-
1
7

-
3
3

-
1
4

-
0
3

4
7

-
1
6

-
1
9

-
2
4

-
0
7

4
7

-
1
7

-
2
1

H
-
C
o
u
n
t
 
8

1
4

9
8

9
4
8

5
1
2

6
8

1
0

4
1

5
1
2

7
8

1
0

*
T
h
e
 
H
a
r
r
i
s
-
K
a
i
s
e
r
 
s
o
l
u
t
i
o
n
 
i
s
 
t
h
e
 
P
'
P
 
p
r
o
p
o
r
t
i
o
n
a
l
 
t
o
g
)
 
v
e
r
s
i
o
n
 
w
i
t
h
 
e
q
u
a
m
a
x
 
r
o
t
a
t
i
o
n
s
.

4
2



16

would be the number of coefficients (a small number being desirable) between .20

and .30, the most tentative region, since, for a given factor, it is not clear

whether such coefficients represent salient or hyperplane variables, a slight

shift in the axis in one direction changing a .25 to .35, whereas in the other

direction, to .15. On this criterion, the graphic and quasi-procrustean

solutions had totals of eight, the Harris-Kaiser, 12.

In Table 3, the within- and between-method correlations and angular

separations for the three solutions to the Sixteen P. F. data are presented. In

terms of within-method obliquity, the mean departure from orthogonality (as des-

cribed earlier), over the ten factor paris, was 10° 9' for the graphic solution,

4° 34' for the Harris-Kaiser, and 12° 30' for the quasi-procrustean. Thus, the

quasi-procrustean solution tended to be somewhat more oblique than the graphic,

the Harris-Kaiser, somewhat more orthogonal, a tendency of the P'P proportional

to 11) version noted elsewhere [Hakstian, in press]. The mean departure from the

obliquity of the graphic solution (as described earlier), over the ten factor pairs,

was 5° 59' for the Harris-Kaiser solution and 4° 35' for the quasi-procrustean.

Finally, over the five factors, the Harris-Kaiser solution had a mean between-

method angular separation with the graphic of 12° 32', the quasi-procrustean, of

11° 13'.

Twenty-Four Psychological Tests

As noted earlier, method (b) of the preceding section was used to identify the

salient variables for each factor in turn. Specifically,for each factor, the

maximal mean difference criterion was applied starting with the largest 12 varimax

loadings being considered salient and subtracting one each time until three load-

ings were lef:. For Factor I, such a procedure yielded five reference structure

18
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TABLE 3

Within- and Between-Method Correlations and Angular Separations for the
Graphic, Harris-Kaiser*, and Quasi-Procrustean Solutions of the

Sixteen P. F. Data (Decimal Points Omitted)

Graphic Primary Factors

I

II

III

IV
V

Within-Method Correlations

100
02 100

27 -03 100
-09 -17 -09 100
-48 17 -09 -33 100

Within-Method Angular Separations

0°

88°51' 0°

74°20' 91043' 0°

95°10' 99047' 95°10' 0°

118°42' 80013' 95°10' 109°16' 0°

Harris-Kaiser*Primary Factors

I

II

III

IV

V

Within-Method Correlations

100

-09 100
06 02 100
-01 -02 00 100

-33 18 -06 -20 100

Within-Method Angular Separations

0°

95°18' 0°

86°38' 88°41' 0°

90°17' 90°54' 90° 4' 0°

109°20' 79°55' 93°19' 101038' 0°

Quasi-Procrustean Primary Factors

I

II

III

IV
V

Within-Method Correlations

100

03 100

21 19 100
-21 -20 -26 100

-39 21 -11 -33 100

Within-Method Angular Separations

0°

88° l' 0°

78° 7' 78°53' 0°

102° 7' 101°25' 105°19' 0°

113° 0' 77°41' 96°36' 109°17' 0°

Between-Method Correlations Between-Method Angular Separations

Graphic Primary Factor Graphic Primary Factor

Solution I II III IV V I II III IV V Mean

Harris-Kaiser* 9857 9600 9692 9756 9856 9042' 16 °16' 14°15' 12°41' 9044' 12032'

Quasi-Procrustean 9928 9623 9825 9754 9849 6°53' 15°47' 10°44' 12°44' 9°58' 11°13'

*The Harris-Kaiser Solution is the P'P proportional to (I) version with equamax
rotations.
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coefficients larger than .30 in absolute value when the number of salient

variables was considered either seven, six, five, four, or three, indicating

that the corresponding five variables are likely to be the salient ones for

this factor. For Factor II, this procedure yielded five reference structure

coefficients larger than .30 when the number of salient variables was considered

to be any number between twelve and three, strongly indicating these five

variables as marking this factor. For Factors III and IV, this procedure

identified five and six salient variables, respectively, with little equivocation.

In Table 4, the graphic, Harris-Kaiser (independent cluster version), and

quasi-procrustean primary pattern solutions for this data set are presented. It

is seen from this table that all three solutions are very "clean" and similar to

one another. Although hyperplane-counts were identical for the Harris-Kaiser

and quasi-procrustean solutions (37 as opposed to 42 for the graphic solution), the

Harris-Kaiser solution did have fewer entries in the .20 - .30 region (9) than

did the quasi-procrustean (12).

In Table 5, within- and between-method correlations and angular separations

for the three solutions to the Twenty-Four Psychological Tests are given. In

terms of within-method obliquity, both the Harris-Kaiser and quasi-procrustean

solutions were very close to the graphic, with the former slightly closer. The

quasi-procrustean solution was perhaps slightly more oblique than the Harris-Kaiser.

The between-method angular separations were very small for both the Harris-Kaiser

and quasi procrustean solutions. Over the four factors, the quasi-procrustean

solution was in slightly closer alignment with the graphic (mean angular

separation of 3° 47') than was the Harris-Kaiser (mean angular separation of 4° 3').

Over the three sets of data, then, the quasi-procrustean solutions compared

very favorably.with the Harris-Kaiser, and tended to be extremely close to graphic

20
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TABLE 5

Within- and Between-Method Correlations and Angular Separations for the
Graphic, Harris-Kaiser*, and Quasi-Procrustean Solutions of the

Twenty-Four Psychological Tests (Decimal Points Omitted)

Graphic Primary Factors

Within-Method Correlations

I 100
II 59 100

III 46 46 100
IV 58 51 60 100

Within-Method Angular Separations

0°

54°12' 0°

62044' 62025' 0°

54°41' 59° 4' 530 8,
0°

Harris-Kaiser* Primary Factors

Within-Method Correlations

I 100
II 61 100
III 54 48 100
IV 60 53 61 100

Within-Method Angular Separations

0°

52°19' 0°

57° l' 61°29' 0°

53029' 57046' 52017' 0°

Quasi-Procrustean Primary Factors

Within-Method Correlations

I 100
II 61 100
III 55 44 100
IV S7 61 60 100

WithinMethod Angular Separations

0°

52°10' 0°

56040' 63044' 0°

48°19' 52°44' 53°20' 0°

Between-M'ethod Correlations Between-Method Angular Separations

Graphic Primary Factor Graphic Primary Factor

Solution I II III IV I II III IV Mean

Harris-Kaiser* 9964 9988 9976 9968 4052, 2048, 3058, 4015, 40 3,

Quasi-Procrustean 9975 9988 9984 9960 4° 4' 2°46' 3°13' 5° 5' 3°47'

*The Barris- Kaiser Solution is the independent cluster version.
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oblique solutions for the same data. Although no reliable assessment of the

efficacy of the quasi-procrustean approach in general can be made from only three

examples, the preliminary results, as reported, appear to indicate that the approach

may have promise.

5. Conclusions

It is hoped that the preliminary work reported in this paper on the general

quasi-procrustean approach as well as the specific procedures discussed will

lead to further refinements and insights into bot', in the search for an oblique

transformation technique yielding a solution with at once a somewhat generalizable

structure and an optimally clear-cut representation of it. On the maximal mean

difference criterion, further research is needed on (1) determining the optimal

weighting factor, k, (2) extending this procedure to the general procrustes

application, and (3) extending the procedure to the orthogonal case. More

important, however, research is needed on the determination of the salient and

non-salient variables for each factor. Finally, in terms of the total quasi-

procrustean approach, the effects of size of the problem, and reliability and

inherent factorial complexity of the variables need attention.
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